Adaptive mesh refinements for analyses of 2D linear elasticity problems using the Kriging-based finite element method
نویسندگان
چکیده
Finite element analyses of irregular structures require adaptive mesh refinement to achieve more accurate results in an efficient manner. This is also true for a non-conventional finite method with Kriging interpolation, called the Kriging-based (K-FEM). paper presents study automatic meshing procedures two-dimensional linear elasticity problems using K-FEM. The Matlab Partial Differential Equation Toolbox was utilized generating meshes Delaunay triangulation. Three error indicators, namely, strain energy error, gradient effective stresses, and element-free Galerkin were employed estimating errors. To find most indicator, resulting total number elements configurations final compared. show that affected by initial configurations, criteria, termination criteria. stresses indicator found be K-FEM, as it can accurately estimate
منابع مشابه
Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
An Adaptive Finite Element Method for Linear Elliptic Problems
We propose an adaptive finite element method for linear elliptic problems based on an optimal maximum norm error estimate. The algorithm produces a sequence of successively refined meshes with a final mesh on which a given error tolerance is satisfied. In each step the refinement to be made is determined by locally estimating the size of certain derivatives of the exact solution through compute...
متن کاملFast Finite Element Method Using Multi-Step Mesh Process
This paper introduces a new method for accelerating current sluggish FEM and improving memory demand in FEM problems with high node resolution or bulky structures. Like most of the numerical methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix equation into several smaller size matrices, the solving procedure can be accelerated. For implementing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: E3S web of conferences
سال: 2023
ISSN: ['2555-0403', '2267-1242']
DOI: https://doi.org/10.1051/e3sconf/202342905004